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Some quick background

Automata Theory is used to prove decidability

◮ Presburger arithmetic FO(N, <,+),

◮ Linear arithmetic FO(R, <,+),

◮ Some other theories FO
(

Π0
1
(R),∪,∩

)

and

◮ (temporal) logics in computer science:

◮ MSO(words), LTL,

◮ MSO(trees), CTL, CTL∗, µ-calculus, . . .
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Classical Temporal Logics

◮ Example: Computation Tree Logic (CTL)

◮ Models: Labeled Trees
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Classical Temporal Logics

◮ Example: Computation Tree Logic (CTL)

◮ Models: Labeled Trees

Probabilistic Temporal Logics

◮ Example: Probabilistic Computation Tree Logic (pCTL)

◮ Models: Labeled Markov Chains (= trees with probabilities)
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A pCTL formula: µ
(

π | π has infinitely many a
)

≥ 1

3

Open Problem (Lehmann–Shelah, 82). Given a formula φ

∃M.(M |= φ)?
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Σ = a finite alphabet
TΣ = Σ-labeled binary trees: t : {L,R}∗→Σ

Example: Σ = {0, 1}
...

...
...

...
...

...
...

...

0

1 0

1 0 0 0

1 1 0 1 0 0 1 1

Definition: A set L⊆T{0,1} is regular if it is definable by a S2S
formula φ(X ).
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Random Generation of Σ-labeled trees

Intuition: generate a Σ-labeled tree by fair-coin tosses.

Example: Σ = {0, 1}

0

1 0

0 1 1
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Random Generation of Σ-labeled trees

Intuition: generate a Σ-labeled tree by fair-coin tosses.

Example: Σ = {0, 1}

0

1 0

0 1 1 0

0 1 1 0 1 1 0 1
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Formally: Probability measure µ on the (Cantor) space TΣ.

Question 1: Given a regular set L⊆TΣ
what is the value of µ(L) ?

Question 0: are all regular sets µ-measurable?
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Measurability of Regular Sets

Question: Are regular sets L⊆TΣ measurable?

Spoiler: answer is yes.

◮ Using a rather advanced theorem (proved using forcing) from
set-theory.

J. Fenstad and D. Normann,

On absolutely measurable sets, Fundamenta Mathematicae, 1974.
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Kolmogorov’s R-sets

Goal (1928): Find a large σ-algebra of definable measurable sets.

◮ Borel Sets = σ
(

Open,
⋃

n
,¬

)

◮ σ-algebra generated by Suslin operation (1918) =

σ
(

Open,A,¬
)

Idea: define operator (transform) R acting on operations.

◮ R(
⋃

n
) = A.

◮ R(A) a new and more expressive operation on sets.

◮ RR(A) . . .

Kolmogorov’s σ-algebra of R-sets: σ
(

Open, {Rn}n,¬
)
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Theorem (Kolmogorov, 1928): Every R-set is measurable.
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Theorem (Kolmogorov, 1928): Every R-set is measurable.

Theorem: (Gogacz, Michalewski, Mio, Skrzypczak, 2017)
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Theorem (Kolmogorov, 1928): Every R-set is measurable.

Theorem: (Gogacz, Michalewski, Mio, Skrzypczak, 2017)

◮ Game languages Wi ,k are complete for the finite levels of the
hierarchy of R-sets.
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Question 1: Given a regular set L⊆TΣ, what is the value
µ(L)?
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Question 1: Given a regular set L⊆TΣ, what is the value
µ(L)?

Algorithmic version: Given a presentation of L (e.g., tree
automaton) and numbers a, b ∈ [0, 1] ∩Q decide if

a < µ(L) < b
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Question 1: Given a regular set L⊆TΣ, what is the value
µ(L)?

Algorithmic version: Given a presentation of L (e.g., tree
automaton) and numbers a, b ∈ [0, 1] ∩Q decide if

a < µ(L) < b

Open problem
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A partial solution.

Theorem: (2015, Michalewski, Mio)
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A partial solution.

Theorem: (2015, Michalewski, Mio)
µ(L) is computable if L is definable by so-called game automata.

Our algorithm is quite involved:

1. Reduction to a systems of nested
(co)inductive polynomial equations,

2. Solve these equations using Tarski’s decision procedure for
FO(R,+,×, 0, 1).

Matteo Mio Workshop on Wadge Theory and Automata II, Torino, 2018



L1⊆T{a,b,c}
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L1⊆T{a,b,c}

Algorithm calculates: µ(L1) =
1

2

Matteo Mio Workshop on Wadge Theory and Automata II, Torino, 2018



L2⊆T{a,b,c}
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L2⊆T{a,b,c}

Algorithm calculates: µ(L2) =
1

4
(3−

√
7) ≈ 0.088
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One application

Model Checking of Markov Branching Processes
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Other curiosities

Lemma (Measure 6= Baire Category)

There are regular sets L such that:

µ(L) = 0 and L is comeager (second category)
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Example: {t | every path has ∞ many a}
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Other curiosities

Lemma (Measure 6= Baire Category)

There are regular sets L such that:

µ(L) = 0 and L is comeager (second category)

Example: {t | every path has ∞ many a}

Lemma (A Zero-One law)

The language Wi ,k ⊆ TΣ with Σ = {∀,∃} × {i , . . . , k}
µ(Wi ,k) = 1 if k is even µ(Wi ,k) = 0 if k is odd.
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Some Questions (possibly easy)

Theorem (Regularity)

For every measurable A ⊆ TΣ, there is a Gδ set B ⊇ A such that
µ(A) = µ(B).
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Some Questions (possibly easy)

Theorem (Regularity)

For every measurable A ⊆ TΣ, there is a Gδ set B ⊇ A such that
µ(A) = µ(B).

Question: Given A ⊆ TΣ regular, can we find B regular?
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Theorem

Let E ⊆ [0, 1] a Borel set. Then there exists a basic interval (a, b)
such that

µ
(

E ∩ (a, b)
)

∈ {0, b − a}
(i.e., E has full or null measure in (a, b)).
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Theorem

Let E ⊆ [0, 1] a Borel set. Then there exists a basic interval (a, b)
such that

µ
(

E ∩ (a, b)
)

∈ {0, b − a}
(i.e., E has full or null measure in (a, b)).

Source: Facebook Group

Mathematical theorems you had no idea existed, cause they are false.
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Theorem

Let E ⊆ [0, 1] a Borel set. Then there exists a basic interval (a, b)
such that

µ
(

E ∩ (a, b)
)

∈ {0, b − a}
(i.e., E has full or null measure in (a, b)).

Source: Facebook Group

Mathematical theorems you had no idea existed, cause they are false.

Question: Is the theorem true for E ⊆ TΣ regular?
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Properties we can express in MSO:
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“X is a branch” ∧ φ(X )
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Properties we can express in MSO:

◮ ∃X .
(

“X is a branch” ∧ φ(X )
)

Properties we wish to express in probabilistic logics:

◮

{

X | “X is a branch” ∧ φ(X )
}

has probability = 1.
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Definition (Syntax of MSO+∀=1
π )

φ ::= ¬φ | φ1 ∨ φ2 | ∀x .φ | ∀X .φ | x ∈ X
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Definition (Syntax of MSO+∀=1
π )

φ ::= ¬φ | φ1 ∨ φ2 | ∀x .φ | ∀X .φ | x ∈ X | ∀=1
π X .φ

∀=1
π X . φ(X ) holds

⇔

{X | X is a branch and φ(X ) holds }
has coinflipping measure 1.
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Definition (Syntax of MSO+∀=1
π )

φ ::= ¬φ | φ1 ∨ φ2 | ∀x .φ | ∀X .φ | x ∈ X | ∀=1
π X .φ

∀=1
π X . φ(X ) holds

⇔

{X | X is a branch and φ(X ) holds }
has coinflipping measure 1.

Question: Is MSO+∀=1
π decidable?
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∀=1
π X . φ(X ) holds

⇔

{X | X is a branch and φ(X ) holds }
has coinflipping measure 1.

∀=1X . φ(X ) holds

⇔

{X | φ(X ) holds }
has coinflipping measure 1.
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A formula φ(X , ~Y ) defines a set in the product space:

TΣ × T n

Σ

#»

Y

X

φ(X,
#»

Y )
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Interpretation of the ∀ quantifier:

#»

Y

X

φ(X,
#»

Y )

∀X.φ(X,
#»

Y )

Takes full sections.
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Interpretation of the ∀=1 quantifier:

Takes full large sections.
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Interpretation of the ∀=1 quantifier:

Takes full large sections.

Quantifier ∀=1X .φ(X ) first studied by H. Friedman in 1979.
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Interpretation of the ∀∗ quantifier:

taking large (= comeager) sections.
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Interpretation of the ∀∗ quantifier:

taking large (= comeager) sections.

Theorem (Friedman, on Borel structures)

The theories of FO + ∀=1 and FO + ∀∗ coincide.
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Interpretation of the ∀∗ quantifier:

taking large (= comeager) sections.

Theorem (Friedman, on Borel structures)

The theories of FO + ∀=1 and FO + ∀∗ coincide.

Theorem (Staiger, 97)

A regular L ⊆ Σω is comeager iff it has measure 1.
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Some Results

Mio, Skrzypczak, Michalewski:

Monadic Second Order Logic
with Measure and Category Quantifiers

in LMCS, vol 14(2), 2018.
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Some Results

Mio, Skrzypczak, Michalewski:

Monadic Second Order Logic
with Measure and Category Quantifiers

in LMCS, vol 14(2), 2018.

Theorem (on ω-words)

MSO+ ∀∗ = MSO and therefore decidable.
MSO+ ∀=1 ) MSO and undecidable.
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= MSO is an open problem.
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◮ if φ(X , ~Y ) is game–automata–definable then

∀∗X . φ(X , ~Y ) is MSO–definable (without ∀∗).
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Theorem (on trees)

MSO+ ∀=1 ) MSO and undecidable.

MSO+ ∀∗ ?
= MSO is an open problem.

◮ Equality claimed in ICALP 2015, but wrong proof :-(

◮ if φ(X , ~Y ) is game–automata–definable then

∀∗X . φ(X , ~Y ) is MSO–definable (without ∀∗).

MSO+ ∀=1
π ) MSO but (un)decidability is open.

◮ (Bojanczyk) WMSO+ ∀=1
π is decidable.
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My Conclusion:

Tree–Automata Theory + Probability 6= Easy

THANKS
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