# Regular Sets of Trees and Probability

Matteo Mio CNRS & ENS-Lyon

Matteo Mio Workshop on Wadge Theory and Automata II, Torino, 2018

## Some quick background

Automata Theory is used to prove decidability

Automata Theory is used to prove decidability

- Presburger arithmetic  $FO(\mathbb{N}, <, +)$ ,
- ▶ Linear arithmetic FO(ℝ, <, +),
- Some other theories  $FO(\Pi_1^0(\mathbb{R}), \cup, \cap)$

Automata Theory is used to prove decidability

- ▶ Presburger arithmetic FO(N, <, +),
- ▶ Linear arithmetic FO(ℝ, <, +),</p>
- Some other theories  $FO(\Pi_1^0(\mathbb{R}), \cup, \cap)$

and

- (temporal) logics in computer science:
  - MSO(words), LTL,
  - MSO(trees), CTL, CTL<sup>\*</sup>,  $\mu$ -calculus, ...

**Classical Temporal Logics** 

- Example: Computation Tree Logic (CTL)
- Models: Labeled Trees

**Classical Temporal Logics** 

- Example: Computation Tree Logic (CTL)
- Models: Labeled Trees

Probabilistic Temporal Logics

- Example: Probabilistic Computation Tree Logic (pCTL)
- Models: Labeled Markov Chains (= trees with probabilities)



÷

÷

÷

i

÷

÷

÷



A pCTL formula:  $\mu(\pi \mid \pi \text{ has infinitely many } a) \geq \frac{1}{3}$ 



A pCTL formula:  $\mu(\pi \mid \pi \text{ has infinitely many } a) \geq \frac{1}{3}$ 



A pCTL formula:  $\mu(\pi \mid \pi \text{ has infinitely many } a) \geq \frac{1}{3}$ 

**Open Problem** (Lehmann–Shelah, 82). Given a formula  $\phi$ 

 $\exists M.(M \models \phi)?$ 

## Regular Sets of Trees and Probability

Matteo Mio CNRS – ENS Lyon, France

Matteo Mio Workshop on Wadge Theory and Automata II, Torino, 2018

#### $\Sigma = \mathsf{a} \text{ finite alphabet}$

$$\begin{split} \Sigma &= \text{a finite alphabet} \\ \mathcal{T}_{\Sigma} &= \Sigma \text{-labeled binary trees:} \quad t: \{L, R\}^* \!\rightarrow\! \Sigma \end{split}$$

$$\begin{split} \Sigma &= \text{a finite alphabet} \\ \mathcal{T}_{\Sigma} &= \Sigma \text{-labeled binary trees:} \quad t: \{L, R\}^* \!\rightarrow\! \Sigma \end{split}$$



$$\begin{split} \Sigma &= \text{a finite alphabet} \\ \mathcal{T}_{\Sigma} &= \Sigma \text{-labeled binary trees:} \quad t: \{L, R\}^* \!\rightarrow\! \Sigma \end{split}$$

#### **Example:** $\Sigma = \{0, 1\}$



**Definition**: A set  $L \subseteq \mathcal{T}_{\{0,1\}}$  is *regular* if it is definable by a S2S formula  $\phi(X)$ .

## Random Generation of $\Sigma$ -labeled trees





















Example:  $\boldsymbol{\Sigma} = \{0,1\}$ 



Example:  $\boldsymbol{\Sigma} = \{0,1\}$ 



**Question 1:** Given a regular set  $L \subseteq \mathcal{T}_{\Sigma}$ 

what is the value of  $\mu(L)$  ?

**Question 1:** Given a regular set  $L \subseteq \mathcal{T}_{\Sigma}$ 

what is the value of  $\mu(L)$  ?

**Question 0:** are all regular sets  $\mu$ -measurable?

## Measurability of Regular Sets

**Question 0:** Are regular sets  $L \subseteq \mathcal{T}_{\Sigma}$  measurable?
#### **Question 0:** Are regular sets $L \subseteq \mathcal{T}_{\Sigma}$ measurable?



# Measurability of Regular Sets

#### **Question:** Are regular sets $L \subseteq \mathcal{T}_{\Sigma}$ measurable?



# Measurability of Regular Sets

#### **Question:** Are regular sets $L \subseteq \mathcal{T}_{\Sigma}$ measurable?



Spoiler: answer is yes.

# Measurability of Regular Sets

### **Question:** Are regular sets $L \subseteq \mathcal{T}_{\Sigma}$ measurable?



#### Spoiler: answer is yes.

- Using a rather advanced theorem (proved using *forcing*) from set-theory.
- J. Fenstad and D. Normann,

On absolutely measurable sets, Fundamenta Mathematicae, 1974.

**Goal (1928)**: Find a large  $\sigma$ -algebra of *definable* measurable sets.

**Goal (1928)**: Find a large  $\sigma$ -algebra of *definable* measurable sets.

• Borel Sets = 
$$\sigma(\texttt{Open}, \bigcup_n, \neg)$$

**Goal (1928)**: Find a large  $\sigma$ -algebra of *definable* measurable sets.

• Borel Sets = 
$$\sigma(\texttt{Open}, \bigcup_n, \neg)$$

►  $\sigma$ -algebra generated by Suslin operation (1918) =  $\sigma$ (Open, A, ¬)

**Goal (1928)**: Find a large  $\sigma$ -algebra of *definable* measurable sets.

• Borel Sets = 
$$\sigma(\texttt{Open}, \bigcup_n, \neg)$$

►  $\sigma$ -algebra generated by Suslin operation (1918) =  $\sigma$ (Open, A,  $\neg$ )

Idea: define operator (transform)  $\mathcal{R}$  acting on operations.

**Goal (1928)**: Find a large  $\sigma$ -algebra of *definable* measurable sets.

• Borel Sets = 
$$\sigma(\texttt{Open}, \bigcup_n, \neg)$$

►  $\sigma$ -algebra generated by Suslin operation (1918) =  $\sigma$ (Open, A,  $\neg$ )

Idea: define operator (transform)  $\mathcal{R}$  acting on operations.

$$\blacktriangleright \ \mathcal{R}(\bigcup_n) = \mathcal{A}.$$

**Goal (1928)**: Find a large  $\sigma$ -algebra of *definable* measurable sets.

• Borel Sets = 
$$\sigma(\texttt{Open}, \bigcup_n, \neg)$$

►  $\sigma$ -algebra generated by Suslin operation (1918) =  $\sigma$ (Open, A,  $\neg$ )

Idea: define operator (transform)  $\mathcal{R}$  acting on operations.

$$\blacktriangleright \mathcal{R}(\bigcup_n) = \mathcal{A}.$$

•  $\mathcal{R}(\mathcal{A})$  a new and more expressive operation on sets.

**Goal (1928)**: Find a large  $\sigma$ -algebra of *definable* measurable sets.

• Borel Sets = 
$$\sigma(\texttt{Open}, \bigcup_n, \neg)$$

►  $\sigma$ -algebra generated by Suslin operation (1918) =  $\sigma$ (Open, A,  $\neg$ )

Idea: define operator (transform)  $\mathcal{R}$  acting on operations.

• 
$$\mathcal{R}(\bigcup_n) = \mathcal{A}.$$

•  $\mathcal{R}(\mathcal{A})$  a new and more expressive operation on sets.

$$\blacktriangleright \mathcal{RR}(\mathcal{A}) \dots$$

**Goal (1928)**: Find a large  $\sigma$ -algebra of *definable* measurable sets.

• Borel Sets = 
$$\sigma(\texttt{Open}, \bigcup_n, \neg)$$

►  $\sigma$ -algebra generated by Suslin operation (1918) =  $\sigma \Big( \texttt{Open}, \mathcal{A}, \neg \Big)$ 

Idea: define operator (transform)  $\mathcal{R}$  acting on operations.

• 
$$\mathcal{R}(\bigcup_n) = \mathcal{A}.$$

- $\mathcal{R}(\mathcal{A})$  a new and more expressive operation on sets.
- $\mathcal{RR}(\mathcal{A})$  ...

Kolmogorov's  $\sigma$ -algebra of  $\mathcal{R}$ -sets:  $\sigma(\text{Open}, \{\mathcal{R}^n\}_n, \neg)$ 

**Theorem** (Kolmogorov, 1928): Every *R*-set is measurable.

### **Theorem** (Kolmogorov, 1928): Every *R*-set is measurable.



#### **Theorem** (Kolmogorov, 1928): Every *R*-set is measurable.



#### Theorem: (Gogacz, Michalewski, Mio, Skrzypczak, 2017)



### **Theorem** (Kolmogorov, 1928): Every $\mathcal{R}$ -set is measurable.



#### Theorem: (Gogacz, Michalewski, Mio, Skrzypczak, 2017)



► Game languages W<sub>i,k</sub> are <u>complete</u> for the finite levels of the hierarchy of *R*-sets.

**Question 1:** Given a regular set  $L \subseteq \mathcal{T}_{\Sigma}$ , what is the value  $\mu(L)$ ?

**Question 1:** Given a regular set  $L \subseteq \mathcal{T}_{\Sigma}$ , what is the value  $\mu(L)$ ?

Algorithmic version: Given a presentation of L (e.g., tree automaton) and numbers  $a, b \in [0, 1] \cap \mathbf{Q}$  decide if

$$\mathsf{a} < \mu(\mathsf{L}) < \mathsf{b}$$

**Question 1:** Given a regular set  $L \subseteq \mathcal{T}_{\Sigma}$ , what is the value  $\mu(L)$ ?

Algorithmic version: Given a presentation of L (e.g., tree automaton) and numbers  $a, b \in [0, 1] \cap \mathbf{Q}$  decide if

$$a < \mu(L) < b$$

### Open problem

A partial solution.

**Theorem:** (2015, Michalewski, Mio)  $\mu(L)$  is computable if *L* is definable by so-called *game automata*.

A partial solution.

```
Theorem: (2015, Michalewski, Mio) \mu(L) is computable if L is definable by so-called game automata.
```

Our algorithm is quite involved:

A partial solution.

**Theorem:** (2015, Michalewski, Mio)  $\mu(L)$  is computable if *L* is definable by so-called *game automata*.

Our algorithm is quite involved:

- Reduction to a systems of nested (co)inductive polynomial equations,
- 2. Solve these equations using Tarski's decision procedure for  $FO(\mathbb{R},+,\times,0,1).$







Algorithm calculates:  $\mu(L_1) = \frac{1}{2}$ 

 $L_2\!\subseteq\!\mathcal{T}_{\{a,b,c\}}$ 







Algorithm calculates: 
$$\mu(L_2)=rac{1}{4}(3-\sqrt{7})pprox 0.088$$

# Model Checking of Markov Branching Processes

 $R \stackrel{0.1}{\rightsquigarrow} D \\ R \stackrel{0.89}{\rightsquigarrow} (R, R) \\ R \stackrel{0.01}{\rightsquigarrow} M \\ M \stackrel{0.9}{\rightsquigarrow} D \\ M \stackrel{0.1}{\rightsquigarrow} (R, M, M, M, M) \\ D \stackrel{1}{\rightsquigarrow} D$ 

Mathematical Biosciences Institute Lecture Series 1.1 Stochastics in Biological Systems

**Richard Durrett** 

Branching Process Models of Cancer



### Lemma (Measure $\neq$ Baire Category)

There are regular sets L such that:

 $\mu(L) = 0$  and L is comeager (second category)

### Lemma (Measure $\neq$ Baire Category)

There are regular sets L such that:

 $\mu(L) = 0$  and L is comeager (second category) Example: {t | every path has  $\infty$  many a}

### Lemma (Measure $\neq$ Baire Category)

There are regular sets L such that:

 $\mu(L) = 0$  and L is comeager (second category) Example: {t | every path has  $\infty$  many a}

Lemma (A Zero-One law)

The language 
$$W_{i,k} \subseteq \mathcal{T}_{\Sigma}$$
 with  $\Sigma = \{\forall, \exists\} \times \{i, \dots, k\}$   
 $\mu(W_{i,k}) = 1$  if k is even  $\mu(W_{i,k}) = 0$  if k is odd.

### Theorem (Regularity)

For every measurable  $A \subseteq \mathcal{T}_{\Sigma}$ , there is a  $G_{\delta}$  set  $B \supseteq A$  such that  $\mu(A) = \mu(B)$ .

### Theorem (Regularity)

For every measurable  $A \subseteq \mathcal{T}_{\Sigma}$ , there is a  $G_{\delta}$  set  $B \supseteq A$  such that  $\mu(A) = \mu(B)$ .

### **Question:** Given $A \subseteq \mathcal{T}_{\Sigma}$ regular, can we find *B* regular?

### Theorem

Let  $E \subseteq [0,1]$  a Borel set. Then there exists a basic interval (a,b) such that

$$\mu(E \cap (a,b)) \in \{0,b-a\}$$

(i.e., E has full or null measure in (a, b)).

#### Theorem

Let  $E \subseteq [0,1]$  a Borel set. Then there exists a basic interval (a,b) such that

$$\mu(E \cap (a,b)) \in \{0,b-a\}$$

(i.e., E has full or null measure in (a, b)).

#### Source: Facebook Group

Mathematical theorems you had no idea existed, cause they are false.
#### Theorem

Let  $E \subseteq [0,1]$  a Borel set. Then there exists a basic interval (a,b) such that

$$\mu(E \cap (a,b)) \in \{0,b-a\}$$

(i.e., E has full or null measure in (a, b)).

#### Source: Facebook Group

Mathematical theorems you had no idea existed, cause they are false.

**Question:** Is the theorem true for  $E \subseteq \mathcal{T}_{\Sigma}$  regular?

# Generalised Quantifiers



## Generalised Quantifiers



Properties we can express in MSO:

• 
$$\exists X.(``X is a branch'' \land \phi(X))$$

## Generalised Quantifiers



Properties we can express in MSO:

• 
$$\exists X.(``X \text{ is a branch}'' \land \phi(X))$$

Properties we wish to express in probabilistic logics:

• 
$$\{X \mid ``X \text{ is a branch}'' \land \phi(X)\}$$
 has probability = 1.

$$\phi ::= \neg \phi \mid \phi_1 \lor \phi_2 \mid \forall x.\phi \mid \forall X.\phi \mid x \in X$$

$$\phi ::= \neg \phi \mid \phi_1 \lor \phi_2 \mid \forall x.\phi \mid \forall X.\phi \mid x \in X \mid \forall_{\pi}^{=1} X.\phi$$

$$\phi ::= \neg \phi \mid \phi_1 \lor \phi_2 \mid \forall x.\phi \mid \forall X.\phi \mid x \in X \mid \forall_{\pi}^{=1} X.\phi$$

 $\forall_{\pi}^{=1}X. \phi(X)$  holds

#### $\Leftrightarrow$

 $\{X \mid X \text{ is a branch and } \phi(X) \text{ holds } \}$ has coinflipping measure 1.

$$\phi ::= \neg \phi \mid \phi_1 \lor \phi_2 \mid \forall x.\phi \mid \forall X.\phi \mid x \in X \mid \forall_{\pi}^{=1} X.\phi$$

 $\forall_{\pi}^{=1}X. \phi(X)$  holds

#### $\Leftrightarrow$

 $\{X \mid X \text{ is a branch and } \phi(X) \text{ holds } \}$ has coinflipping measure 1.

**Question:** Is MSO+ $\forall_{\pi}^{=1}$  decidable?

## $\forall_{\pi}^{=1}X. \phi(X)$ holds

 $\Leftrightarrow$ 

 $\{X \mid X \text{ is a branch and } \phi(X) \text{ holds } \}$ has coinflipping measure 1.

 $\forall^{=1}X. \phi(X)$  holds

 $\Leftrightarrow$ 

 $\{X \mid \phi(X) \text{ holds }\}$ has coinflipping measure 1. A formula  $\phi(X, \vec{Y})$  defines a set in the product space:



Interpretation of the  $\forall$  quantifier:



Interpretation of the  $\forall^{=1}$  quantifier:



Takes *full large* sections.

Interpretation of the  $\forall^{=1}$  quantifier:



Takes *full large* sections.

Quantifier  $\forall^{=1}X.\phi(X)$  first studied by H. Friedman in 1979.

Interpretation of the  $\forall^*$  quantifier:



taking large (= comeager) sections.

Interpretation of the  $\forall^*$  quantifier:



taking large (= comeager) sections.

Theorem (Friedman, on Borel structures)

The theories of  $FO + \forall^{=1}$  and  $FO + \forall^*$  coincide.

Interpretation of the  $\forall^*$  quantifier:



taking large (= comeager) sections.

Theorem (Friedman, on Borel structures)

The theories of  $FO + \forall^{=1}$  and  $FO + \forall^*$  coincide.

Theorem (Staiger, 97)

A regular  $L \subseteq \Sigma^{\omega}$  is comeager iff it has measure 1.

Mio, Skrzypczak, Michalewski:

Monadic Second Order Logic with Measure and Category Quantifiers

in LMCS, vol 14(2), 2018.

Mio, Skrzypczak, Michalewski:

Monadic Second Order Logic with Measure and Category Quantifiers

in LMCS, vol 14(2), 2018.

Theorem (on  $\omega$ -words)

 $MSO + \forall^* = MSO$  and therefore decidable.

Mio, Skrzypczak, Michalewski:

Monadic Second Order Logic with Measure and Category Quantifiers

in LMCS, vol 14(2), 2018.

Theorem (on  $\omega$ -words)

$$\begin{split} \mathsf{MSO} + \forall^* &= \mathsf{MSO} \text{ and therefore decidable.} \\ \mathsf{MSO} + \forall^{=1} \supsetneq \mathsf{MSO} \text{ and undecidable.} \end{split}$$

 $MSO + \forall^{=1} \supseteq MSO$  and undecidable.

 $MSO + \forall^{=1} \supseteq MSO$  and undecidable.

 $MSO + \forall^* \stackrel{?}{=} MSO$  is an open problem.

 $MSO + \forall^{=1} \supseteq MSO$  and undecidable.

 $MSO + \forall^* \stackrel{?}{=} MSO$  is an open problem.

Equality claimed in ICALP 2015, but wrong proof :-(

 $MSO + \forall^{=1} \supseteq MSO$  and undecidable.

 $MSO + \forall^* \stackrel{?}{=} MSO$  is an open problem.

- Equality claimed in ICALP 2015, but wrong proof :-(
- ► if  $\phi(X, \vec{Y})$  is game-automata-definable then  $\forall^*X. \ \phi(X, \vec{Y})$  is MSO-definable (without  $\forall^*$ ).

 $MSO + \forall^{=1} \supseteq MSO$  and undecidable.

 $MSO + \forall^* \stackrel{?}{=} MSO$  is an open problem.

- Equality claimed in ICALP 2015, but wrong proof :-(
- ► if  $\phi(X, \vec{Y})$  is game-automata-definable then  $\forall^*X. \ \phi(X, \vec{Y})$  is MSO-definable (without  $\forall^*$ ).

 $MSO + \forall_{\pi}^{=1} \supseteq MSO$  but (un)decidability is open.

 $MSO + \forall^{=1} \supseteq MSO$  and undecidable.

 $MSO + \forall^* \stackrel{?}{=} MSO$  is an open problem.

- Equality claimed in ICALP 2015, but wrong proof :-(
- ► if  $\phi(X, \vec{Y})$  is game-automata-definable then  $\forall^*X. \ \phi(X, \vec{Y})$  is MSO-definable (without  $\forall^*$ ).

 $MSO + \forall_{\pi}^{=1} \supseteq MSO \text{ but } (un) \text{decidability is open.}$ 

• (Bojanczyk) WMSO +  $\forall_{\pi}^{=1}$  is decidable.

My Conclusion:

## Tree–Automata Theory + Probability $\neq$ Easy

# THANKS

Matteo Mio Workshop on Wadge Theory and Automata II, Torino, 2018